4.3 Relate Transformations and Congruence

Transformations - Changing the original size, shape or position of a figure to create a new image.

Rigid Transformation - Transformations that do NOT change their shape or size.

Isometry - The original image and the new image are congruent.

Preimage - Original image.

Image - Transformed or "new" image.

Describing a Transformation (') - A transformed image is named by adding a prime symbol (') to the original name.

$$\triangle ABC \rightarrow \triangle A'B'C' \rightarrow \triangle A''B''C''$$

4 TYPES OF TRANSFORMATIONS

- 1. _____ 3.
- 3.
- 2.
- 4. _____
- **1. Translation -** Every point moves in a straight line, same distance and same direction. ie.

RULES FOR TRANSLATING:

- 1. (x+__, y+__) the translation will be ____ units and ____ units.
- 2. (x+__, y-__) the translation will be _____ units and ____ units.
- 3. (x-__, y+__) the translation will be _____ units and ____ units.
- 4. (x-__, y-__) the translation will be _____ units and ____ units.
- Rotation Every point of a figure moves around a given point called the "center of rotation." ie.

Three things to know before rotating:

- **1. Center of rotation -** the point in which you are performing the rotation.
- 2. Angle of rotation degree of rotation
- 3. Direction Clockwise or Counter Clockwise

RULES FOR ROTATIONS:

- 1. 90° about the origin: R(origin, 90°): $A(x, y) \longrightarrow A'(-y, x)$
- 2. 180° about the origin R(origin, 180°): $A(x, y) \longrightarrow A'(-x, -y)$
- 3. 270° about the origin R(origin, 270°): $A(x, y) \longrightarrow A'(y, -x)$

3. Reflection - Flipping the object over a line called the line of reflection. ie. _____

RULES FOR REFLECTIONS:

- 1. Reflection over x-axis: $A(x, y) \longrightarrow A'(x, -y)$
- 2. Reflection over y-axis: $A(x, y) \longrightarrow A'(-x, y)$
- 3. Reflection over y = x: $A(x, y) \longrightarrow A'(y, x)$
- 4. Reflection over y = -x: $A(x, y) \longrightarrow A'(-y, -x)$

4. Dilation - Similar Figures. Dilations are **NOT isometric**.

(We will discuss *Dilations* further in Chapters 6 and 9.)

Things to know before Dilating

- 1. Scale Factor, n.
 - a. n > 1 then it is an _____
 - b. n < 1 then it is a ______.
 - c. n = 1 then it ______
- 2. Center of Dilation

